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Numerical Simulation of Sepatrated Flows over
Arbitrary Airfoils and Their Resulting Wakes

Introduction

The aerodynamic design of a flight vehicle must carefully account for the
drag. The estimation of the drag }s greatly affected by viscous effects. For
fléws of practical interest, the Reynolds number is sufficiéntly large for the
flow field to be divided iﬁto viscous and inviscid zones, e.g., the problem of
flow past wing. Different approaches are available for solving such a prob-
lem. Inherently, the Navier-Stokes formulations lead to an extremely stiff
nonlinear system. Using an explicit algorithm to solve such problems results
in the requirement of very small time-steps in order to satisfy the stability
bounds. Therefore, many iterations and large computer times are reéuired to
reach the steady~state. To remove the time-stép restriction, fully implicit
methods have been investigated. The implicit methods, however, still require
many iterations to reach the steady state and consequently, still require
large computational costs.

In an effort to decrease the computational costs associated with the im-
plicit algorithms, many different procedures have been studied, in particular

the Pulliam-Chaussee diagonalization procedure1

and the Barth-Steger matrix
reduction method.>2 ‘New dissipation models3 and spatially varying time-steps
have dramatically increased the convergence rate. However, one problem still
remains: long running times for general configuration. In aircraft design,
any pertinent parameters must be accurately predicted (CL, Cpr etc.). To this
end, high resolution is required in ;rder to accurately compﬁte the flow
physics of shock and boundary-layer interaction, massive separation and turbu~
lent flow structures.

To overcome the problem of grid generation for complicated geometries and

long tunning times, zonal approaches have become increasingly popular. By




zonal approach we mean partitioning of the flow field into distinct zones each
of which is solved independently, where the length scales associated with each
individual region are honored. There are a number of advantages for the zonal
technique. First, the difficulty in generating three-dimensional grids for
different types of complex configurations can bé>eliminated with the use of
zonal methods. Second, zonal methods would allow different types of grid
topologies to be ;mplemented where appropriate in order for the grids to be
mesh-efficient, that is, more points on the configuration, where accuracy is
desired, and fewer points in the outer flow field. And finally, finer meshes
can be used in those regions of rapid changes in the flow quantities, for ex-
ample, in the regio;s where shocks occur, in the viscous boundary layer, or
where vorticity is generated. The zonal concept has been successfully applied

4:5/6 5 some model problems for two-dimensional and axisymmetric

by the author
flows.

The present work is a generalization and improvement of an earlier work
developed for studying separated flows using boundary layer type equations.
The improvements include extensions to a general coordinate system and use of
a more general zonal technique for solving the coupled equations. In order to
be able to consider arbitrary geometries, second order accurate (in space)
conservative differences are generated by considering the integral formulation
of the governing equations in a general coordinate system. The general coor-
dinate system is handled in as general a manner as possible to allow for the
use of either analytically or numerigally generated coordinate systems.

The present work used a marching procedure for solving the PPNS (Par-
tially Parabolized Navier-Stokes) equations in the viscous region coupled in a

fully implicit manner with the elliptic inviscid equation. To test the algo-

rithm and-compare to other solutions, solutions for flow over a flat plate and



flow pasf the symmetrical 12-pefceht-thick Joukowski airfoil (JO12) at zero

angle of attack were obtained.

Analysis
- The basic equations which describe the motion of laminar incompressible

flow are the Navier-Stokes equations. These equations can be written in

stream function-vorticity (¢-w) form in general coordinates,
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and Ry is the Reynolds number.
If the chosen coordinate system is orthogonal, then 8 is zero.
Defining the unit vectors in the (£,n) coordinate system as (31,;2) , the

velocity vector 3 can be expressed as
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where u and v are the components of ¥ defined as,
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The relation between the Cartesian velocity components (uc,vc) and the

present velocity components (u,v) is,

Evaluation of the Pressure

The momentum equations can be written as
oV o v¥ = —yp - V2%

where p is the pressure and p is the density.
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Multiplying the x-momentum equation by dx and the y-momentum equation by dy

and adding the two to get a single equation for the pressure,
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Equation (13) can be written as,
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The Cartesian operators can be expresed in terms of the general coordinates as
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Equation (13) is expressed in terms of the general coordinates as,
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Inviscid Analysis

The inviscid solution in the present work is obtained from an incompress-

ible stream function representation of the inviscid flow region with zero vor=~

ticity. The boundary conditions for the inviscid region are, at the inflow
boundary, £=§1, u=u_ . On the interface J is known from the coupling between
the viscous and inviscid zones, and for n+», u *u_. At the outer flow boun-
dary, §=Eo, wx =0 (see reference 6 for more details).

A second order accurate conservative difference scheme is generated for

the stream function equation, by integrating the equation around a differential




element in the physical domain. The resulting algebraic system of equations
is solved iteratively with the SLOR (Successive Line Over Relaxation) scheme.
At each £-line in the computational domain, the finite difference equation at

each nodal point is

ag GWJ_1 + bszJ + cJGwJ+1 = dJ (19)

where the index J denotes the grid position in the n direction and 8§y the

change of J between successive iterations, that is
Sy = ¢ -y (20)

Along each E-line, a tridiagonal system of equations is solved using the

Thomas algorithm.

Viscous Analysis

The flow in the viscous region is assumed to be governed by PPNS or (TL)

equations,
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The above equations are to be solved in the viscous region.
Boundary conditions for the viscous equations are at the surface,
n=0, p=9¢ =20 (23a)

at the interface,



n o= Moer Y = wIN (obtained from the coupling), w = 0 (23b)
at the inflow boundary,

E=E v =9, v =0 (n (23¢)
at the outflow boundary,

E = EO' viscid/inviscid interaction is negligible.

Central finite difference approximations are used everywhere except for
the term (wnGmE), which is treated as an upwind difference. That means, in
the limit of the steady state, a second order accurate solution is obtained.

At each S line, the correction equations based on a Newton linearization

procedure have the general form:
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A block (2x2) tridiagonal Thomas algorithm is used, where in the forward
pass, the coefficients are calculated starting with the interface boundary
conditions. The boundary condition at the surface and the coupling between
viscous and inviscid zones are treated between viscous and inviscid zones are

treated in the same way described in reference 6.

Numerical Generation of Metric Coefficients

As explained, one way of generating a second order accurate conservative
differencing scheme includes calculating the metric coefficients and the
Jacobian of the coordinate transformation at the center (in the transformed

plane) of each side of the differential element shown in sketch 1.




Sketch 1, Differential Element

On sides 1 and 3 the coefficients %-and %-will be calculated while g‘and %
will be calculated on sides 2 and 4. Using side 1 as an example, a1, 81 and

J1 were previously defined as,

_ .2 2
a, = x1E + y1E (25)

81 = x15 x1n + y15 y1n (26)




and

Ty = Xqg Y9 7 ¥4 Yig (27)
Along side 1, An = 0, therefore,

Ax1 = x1g AE1 (28)
or

Ax1

x‘E = ZE: {29)

Using the subscripts in sketch 1,
. 2 5 39 R L3 (30)
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i, iV

where A§1 = AE., = Af = constant.
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These central differences are second order accurate in space. Therefore,

a, can be represented to second order accuracy as

a, =a, .4q, = (x )2 + (y )2 (31)
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The coefficients B8 and J include the terms x and y, .« X and y are cal-
n in n in
culated in the same manner as x15 and y1n, and their second order accurate

finite difference representations are
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Therefore, the second order accurate representations of 81 and J1 are
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The finite difference expressions for the metric coefficients and
Jacobian of the transformation at the center of the remaining element sides
are derived analogously. Therefore, to generate the metric coefficients and
Jacobians throughout the solution plane with central differences, the
Cartesian coordinates of the algorithm solution points, the corners of the

differential elements, and the points outside the boundaries, must be known.

Results and Discussion

The algorithm was tested for two cases. The first case was flow over a
flat plate and the second one was flow past the symmetrical Joukowski airfoil
J012 at zero angle of attack. The flat plate solution exactly matched the
known Blasius solution. For the case of J012 airfoil, the choice of the grid
is very critical for viscous computations over airfoils. There has been
general agreement that C type grids are the best for handling the trailing
edge and wakes for airfoils. One clear advantage of the present formulation
is the complete independence on the way by which the grid is generated. That
means the present scheme is capable éf solving any type of grids. A C type
grid for J012 airfoil used by NASA Langley, see fiqure 1, was implemented for

the present work. Only half of the grid (Figure 2) was used for the actual

10




computations due to the symmetry of the problem. The grid shown in Figure 1
is a coarse érid for high Reynolds number flows. Only two Reynolds number

solutions (Re=1000 and Re=2000) were obtained for the grid shown in fiqure 2.
Figure 3 shows the friction coefficient (Ef) over the surface of the airfoil

at Re=1000. The value of Ef in the vicinity of the leading edge of the

8

airfoil is in complete agreement with the stagnation point flow™ solution

(¢nnwf1.2326). The values of Ef near the trailing edge of the airfoil were
magnified on a larger scale to be able to see the solution in that region
(Figure 4). As the R4 increased up to 2000, the flow separated at 64% of the
chord in accordance of the experimental data of reference 8, and the solution
of the integral form of the boundary layer equations, see figure 5. The

values of Ef in the separated region are displayed on a larger scale, figure

6. The streamline contours are given in figure 7.

Conclusion
The contribution of the current work lies in the generalization of the
zonal technique for solving separated flows over any arbitrary airfoil. A
numerical study of the aerodynamic characteristics for airfoils near stall is

viable using the developed method.
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